Tudor Grange Academies Trust

Primary

Maths

Calculation Policy

Last Updated: Monday $1^{\text {st }}$ November 2022

Calculation Policy

Our calculation policy has been devised to meet requirements of the National Curriculum 2014 for the teaching and learning of mathematics. It gives pupils a consistent and smooth progression of calculation learning across the school. Early learning in number and calculation in EYFS 1 and 2 follows the "Development Matters" EYFS Document. This calculation policy is designed to build on progressively from the content and methods established in the Early Years Foundation Stage.
Choosing a calculation method:
Children need to be taught and encouraged to ask the following questions when deciding how to approach a calculation:

- Can I do it in my head using a mental strategy?
- Could I use a diagram to help me?
- Should I use a written method to work it out?

Mental Calculation

Addition

\section*{Mental recall of number bonds
 | $6+4=10$ | $\square+3=10$ |
| :--- | :--- |
| $25+75=100$ | $19+\square=20$ |}

Use near doubles

$6+7=$ double $6+1=13$

Addition using partitioning and recombining

$34+45=(30+40)+(4+5)=79$

Counting on or back in repeated steps of $\mathbf{1 , 1 0 , 1 0 0 , 1 0 0 0}$
$86+57=143$ (by counting on in tens and then in ones) $460-300=160$ (by counting back in hundreds)

Add the nearest multiple of $\mathbf{1 0}, 100$ and 1000 and adjust
$24+19=24+20-1=43$
$458+71=458+70+1=529$

Use the relationship between addition and subtraction
$36+19=5519+36=55$
$55-19=3655-36=19$

Subtraction

Mental recall of addition and subtraction facts

$10-6=417-£$ 回 $=11$
$20-17=310-£$? $=2$

Find a small difference by counting on
$82-79=3$
Counting on or back in repeated steps of 1,10,100,1000 86-52 = 34 (by counting on/back in tens and then in ones) 460-300=160 (by counting on/back in hundreds)

Subtract the nearest multiple of 10, 100 and 1000 and adjust $24-19=24-20+1=5$ $458-71=458-70-1=387$

Use the inverse relationship between addition and subtraction $36+19=5519+36=55$
$55-19=3655-36=19$

Multiplication

Doubling and halving

Applying the knowledge of doubles and halves to known facts．
e．g． 8×4 is double 4×4

Using multiplication facts

Year $21,2,5$ and 10 times tables
Year 3 3，4， 8 times tables
Year 4， 5 \＆ 6 Derive and recall all multiplication and division facts up to 12×12

Using and applying division facts

Children should be able to utilise their tables knowledge to derive other facts．
e．g．If 1 know $3 \times 7=21$ ，what else do I know？
$30 \times 7=210,300 \times 7=2100,3000 \times 7=21000,0.3 \times 7=2.1$ etc
£回x $7=21300 \times r$ 回 $=2100 £$ 回 ．回 $=2.1$

Use closely related facts already known

$13 \times 11=(13 \times 10)+(13 \times 1)$
$=130+13$
$=143$

Multiplying by $\mathbf{1 0}$ or $\mathbf{1 0 0}$

Knowing that the effect of multiplying by 10 is a shift in the digits one place to the left．
Knowing that the effect of multiplying by 100 is a shift in the digits two places to the left．

Partitioning

$23 \times 4=(20 \times 4)+(3 \times 4)$
$=80+12$
$=102$

Use of factors

$8 \times 12=8 \times 4 \times 3$

Division

Doubling and halving

Knowing that halving is dividing by 2

Deriving and recalling division facts

Year 2 1，2， 5 and 10 times tables
Year 3 3，4， 8 times tables
Year 4， 5 \＆ 6 Derive and recall all multiplication and division facts up to 12×12
Using and applying division facts
Children should be able to utilise their tables knowledge to derive other facts．
E．g．If I know $3 \times 7=21$ ，what else do I know？
$30 \times 7=210,300 \times 7=2100,3000 \times 7=21000,0.3 \times 7=2.1$ etc
$£$ 回 $\div 2=480 \div r$ 回 $=40 £$ 回 $\div r$ ？$=40$

Dividing by $\mathbf{1 0}$ or $\mathbf{1 0 0}$

Knowing that the effect of dividing by 10 is a shift in the digits one place to the right．
Knowing that the effect of dividing by 100 is a shift in the digits two places to the right．

Use of factors

$72 \div 1872 \div 6=1212 \div 3=472 \div 18=4$
（6 and 3 are factors of 18 ）
Use related facts
Given that $1.4 \times 1.1=1.54$
What is $1.54 \div 1.4$ ，or $1.54 \div 1.1$ ？

Use of Bar Models

A bar model does not do any maths for us - it gives us a visual representation of the maths we are working on. If we are using different concrete and pictorial representations for each topic, it is important to have one representation that acts as a common spine through the curriculum.
By representing each of these topics with a bar model pupils don't need to remember different diagrams for each topic - they know that they can always use a bar model.
When introducing bar models, it is important that children start with the concrete object and transition to iconic representations (counters or cubes). The final stage would be to draw boxes to show a bar.

Below are the small steps used from Y 1 onwards when introducing the bar model.

Tim has four sweets. Ben has two sweets.

How many sweets do they have altogether?

Use the bar model to help you write each fact family

11	
4	7
	$4+7=11$ $7+4=11$ $11-4=7$ $11-7=4$

Matthew has a 300 g block of cheese. He eats $\frac{2}{5}$ of the cheese and puts the rest back in the fridge. How much cheese did Matthew put back in the fridge?

Calculation policy: Addition

Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.

| Combining two parts to make a whole (use other |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| resources too e.g. eggs, shells, teddy bears, cars). |

Regrouping to make 10; using ten frames and counters/cubes or using Numicon. $\begin{array}{l\|l\|l\|} \hline 6+5 \\ \hline & & 0 \\ \hline & & \\ \hline \end{array}$	Children to draw the ten frame and counters/cubes.	Children to develop an understanding of equality e.g. $\begin{aligned} & 6+\square=11 \\ & 6+5=5+\square \\ & 6+5=\square+4 \end{aligned}$
TO + O using base 10. Continue to develop understanding of partitioning and place value. $41+8$	Children to represent the base 10 e.g. lines for tens and dot/crosses for ones.	$41+8$ $\begin{aligned} & 1+8=9 \\ & 40+9=49 \end{aligned}$ $\begin{array}{r}41 \\ +\quad 8 \\ \hline 49\end{array}$
TO + TO using base 10. Continue to develop understanding of partitioning and place value. $36+25$	Chidren to represent the base 10 in a place value chart.	Looking for ways to make 10.

Use of place value counters to add HTO + TO, HTO +
HTO etc. When there are 10 ones in the 1s column- we exchange for 1 ten, when there are 10 tens in the 10s column- we exchange for 1 hundred.

100 s	10 s	1s
-0	0000	000
0.0	0000	00
	0	00
6	1	$\underbrace{}_{1}$

Chidren to represent the counters in a place value chart, circling when they make an exchange.

243

+368
611
11

Conceptual variation; different ways to ask children to solve 21 + 34

Word problems: In year 3, there are 21 children and in year 4, there are 34 children. How many children in total?	21
$21+34=55$. Prove it	+34

Calculate the sum of twenty-one and thirty-four.

Missing digit problems:	
10s	1 s
\bigcirc	(1)
- \bigcirc°	?
?	5

Calculation policy: Subtraction

Key language: take away, less than, the difference, subtract, minus, fewer, decrease.

Finding the difference (using cubes, Numicon or Cuisenaire rods, other objects can also be used). Calculate the difference between 8 and 5 .	Children to draw the cubes/other concrete objects which they have used or use the bar model to illustrate what they need to calculate.	Find the difference between 8 and 5 . $8-5$, the difference is \square Children to explore why $9-6=8-5=7-4$ have the same difference.
Making 10 using ten frames. $14-5$	Children to present the ten frame pictorially and discuss what they did to make 10.	Children to show how they can make 10 by partitioning the subtrahend. $\begin{aligned} & 14-4=10 \\ & 10-1=9 \end{aligned}$
Column method using base 10 . 48-7	Children to represent the base 10 pictorially.	Column method or children could count back 7 .

Calculation policy: Multiplication

Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups.

Use arrays to illustrate commutativity counters and other objects can also be used. $2 \times 5=5 \times 2$ 2 lots of 5 2 lots of 5 lots of 2	Children to represent the arrays pictorially.	Children to be able to use an array to write a range of calculations e.g. $\begin{aligned} & 10=2 \times 5 \\ & 5 \times 2=10 \\ & 2+2+2+2+2=10 \\ & 10=5+5 \end{aligned}$
Partition to multiply using Numicon, base 10 or Cuisenaire rods. 4×15	Children to represent the concrete manipulatives pictorially.	Children to be encouraged to show the steps they have taken. $\begin{array}{r} 4 \times 15 \\ 10 \times 4=40 \\ 5 \times 4=20 \\ 40+20=60 \end{array}$ A number line can also be used
Formal column method with place value counters (base 10 can also be used.) 3×23	Children to represent the counters pictorially.	Children to record what it is they are doing to show understanding. $\left.\begin{array}{cc} 3 \times 23 & 3 \times 20=60 \\ 1 / & 3 \times 3=9 \\ 20 & 3 \end{array}\right) 60+9=69$ $\begin{array}{r} 23 \\ \times \quad 3 \\ \hline 69 \\ \hline \end{array}$

Calculation policy: Division

Key language: share, group, divide, divided by, half.

$2 d+1 d$ with remainders using lollipop sticks. Cuisenaire
rods, above a ruler can also be used.
$13 \div 4$

Use of lollipop sticks to form wholes- squares are made
because we are dividing by 4.

Short division using place value counters to group. $615 \div 5$

1. Make 615 with place value counters.
2. How many groups of 5 hundreds can you make with 6 hundred counters?
3. Exchange 1 hundred for 10 tens.
4. How many groups of 5 tens can you make with 11 ten counters?
5. Exchange 1 ten for 10 ones.
6. How many groups of 5 ones can you make with 15 ones?

Long division using place value counters
$2544 \div 12$

1000s	100s	10s	15
-O	θ^{000}	0000	0000
1000s	100s	10s	Is
		OOC	णலరర

We can't group 2 thousands into groups of 12 so will exchange them.

We can group 24 hundreds into groups of 12 which leaves with 1 hundred.

$$
\begin{gathered}
02 \\
\frac{02}{2544} \\
\frac{24}{1}
\end{gathered}
$$

1000s	100s	10s	Is
			-णరె

After exchanging the hundred, we	$12 \lcm{021}$
have 14 tens. We can group 12 tens into a group of 12 , which leaves 2 tens.	$\frac{24}{14}$
	$\frac{12}{2}$

Conceptual variation; different ways to ask children to solve $615 \div 5$

Long division

Tudor Grange Academies Trust

